The influence of gravity on the formation of amyloplasts in columella cells of Zea mays L.

نویسندگان

  • R Moore
  • W M Fondren
  • E C Koon
  • C L Wang
چکیده

Columella (i.e., putative graviperceptive) cells of Zea mays seedlings grown in the microgravity of outer space allocate significantly less volume to putative statoliths (amyloplasts) than do columella cells of Earth-grown seedlings. Amyloplasts of flight-grown seedlings are significantly smaller than those of ground controls, as is the average volume of individual starch grains. Similarly, the relative volume of starch in amyloplasts in columella cells of flight-grown seedlings is significantly less than that of Earth-grown seedlings. Microgravity does not significantly alter the volume of columella cells, the average number of amyloplasts per columella cell, or the number of starch grains per amyloplast. These results are discussed relative to the influence of gravity on cellular and organellar structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots.

Quantitative analysis of statolith sedimentation behavior was accomplished using videomicroscopy of living columella cells of corn (Zea mays) roots, which displayed no systematic cytoplasmic streaming. Following 90 degrees rotation of the root, the statoliths moved downward along the distal wall and then spread out along the bottom with an average velocity of 1.7 microm min(-1). When statolith ...

متن کامل

Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells.

The endoplasmic reticulum (ER) of columella root cap cells has been postulated to play a role in gravity sensing. We have re-examined the ultrastructure of columella cells in tobacco (Nicotiana tabacum) root tips preserved by high-pressure freezing/freeze-substitution techniques to gain more precise information about the organization of the ER in such cells. The most notable findings are: the i...

متن کامل

Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes.

In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsi...

متن کامل

Comparing cytogenetic effects of extremely low frequency electromagnetic fields in Brassica napus L and Zea mays L

Many biological effects of exposure to extremely low frequency electromagnetic fields(ELF-EMFs) have been documented, but little work carried out on plants. A meiotic study wasperformed on Brassica napus L as C3 plant and Zea mays L as a C4 plant exposed to electromagneticfields. Our investigations were focused on plants grown from wet pretreated seeds with3 and 10 mT for a 4 h exposure time an...

متن کامل

Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish.

In response to a moisture gradient, roots exhibit hydrotropism to control the orientation of their growth. To exhibit hydrotropism, however, they must overcome the gravitropism that is dominant on Earth. We found that moisture gradient or water stress caused immediate degradation of the starch anchors, amyloplasts, in root columella cells of Arabidopsis and radish (Raphanus sativus). Namely, de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 82  شماره 

صفحات  -

تاریخ انتشار 1986